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The concept of information mobility in complex networks is introduced on the basis of a stochastic process
taking place in the network. The transition matrix for this process represents the probability that the informa-
tion arising at a given node is transferred to a target one. We use the fractional powers of this transition matrix
to investigate the stochastic process at fractional time intervals. The mobility coefficient is then introduced on
the basis of the trace of these fractional powers of the stochastic matrix. The fractional time at which a network
diffuses 50% of the information contained in its nodes �1 /k50� is also introduced. We then show that the
scale-free random networks display a better spread of information than the non-scale-free ones. We study 38
real-world networks and analyze their performance in spreading information from their nodes. We find that
some real-world networks perform even better than the scale-free networks with the same average degree and
we point out some of the structural parameters that make this possible.
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I. INTRODUCTION

The concept of mobility is widely used in social and eco-
nomic sciences. Social mobility �1�, for instance, refers to
the degree to which the social status of an individual or a
social group can change through the course of his or her life.
In an economic context the mobility refers to the change in
the income or wealth in an economy over time �2,3�. Then,
the concept of mobility reflects some dynamical aspects of
the evolution of complex systems such as a society or an
economy. To understand the importance of this concept in
the general context of complex networks, consider three in-
stitutions in an economy with incomes of $10, $20, and $30,
respectively. At the next time step, their incomes may change
to $30, $20, and $10, respectively. The distribution of the
income at the initial stage is exactly the same as the one at
the final. However, the status of nodes 1 and 3 has changed
due to the mobility of some capital from one institution to
another. Thus, the internal mobility can make the difference
between two societies or economies more than the income
distribution does �4�. In a recent work Ding et al. �5� inves-
tigated the economic mobility in four money transfer models
used in research on the wealth distribution. An important
conclusion of their work is that, even though different mod-
els have the same type of distribution, their mobilities may
be quite different.

Mobility indices are generally based on the transition ma-
trix of a Markovian chain �6�. In such matrices the probabil-
ity of movements between classes are given by the off-
diagonal entries of the matrix �7�. The larger the elements on
the main diagonal, the higher the propensity of staying in the
same state in the next period of time. Then, if one of the
nondiagonal entries increases at the expense of the diagonal
component, the new structure is considered to have more
mobility than the previous one �7�. The aim of mobility in-
dices is to quantify the magnitude of the off-diagonal entries

of the transition matrix against the magnitude of the diagonal
ones in a consistent manner �7,8�. These indices are real-
valued scalars taking values between 0 and 1 �7,8�. An inter-
esting assumption which is imposed on mobility indices is
that the identity matrix is associated with the minimum value
of the index, representing the maximal immobility of the
system �7�. In a seminal paper Shorrocks introduced a mo-
bility index based on the trace of the transition matrix, which
has been widely used in the economic and the social science
literatures �7�. However, there are several other indices pro-
posed in the literature which have also been applied to study
social and economic mobilities �6�.

Here, we are interested in extending the concept of mo-
bility to a wider context. Instead of analyzing the mobility of
social status of individuals in a society or the mobility of the
income or wealth in an economy, we are interested in the
mobility of information in a complex network. Our principal
aim is to introduce a model that permits us to understand
how the topological organization of a complex system influ-
ences the mobility of information among the agents forming
the system. We propose here a stochastic model for studying
the mobility of information in a complex network and ana-
lyze its principal characteristics. We introduce an analog of
the Shorrocks index of mobility �7� in this context and we
show that some of the axioms previously imposed on mobil-
ity models arise naturally in this context. For instance, the
association of the identity matrix with the minimum value of
the index is a natural consequence of the model proposed
here. We analyze the mobility of information in random net-
works as well as in a variety of real-world ones. The infor-
mation mobility in a complex network appears to be related
to the average degree, the degree distribution, and the homo-
geneity of the network.

II. ROOTS OF STOCHASTIC MATRICES

The determination of stochastic roots of stochastic matri-
ces has found many applications in different areas of applied
mathematics �9–12�. For instance, in economical applica-*ernesto.estrada@strath.ac.uk
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tions credit ratings for a company are represented by a sto-
chastic matrix recording the probability that the company
changes from a credit rating to another �10,11�. These tran-
sition matrices are recorded for a given time interval, which
is usually 1 yr. In some cases, however, it is necessary to
make predictions for periods shorter than 1 yr, usually 1
month. To obtain such monthly transition matrices, it is nec-
essary to find the stochastic roots of the annual transition
matrix. Other examples have been described for hourly tran-
sition matrices describing weather conditions in an airport
�12�. In this case it is necessary to obtain information about
shorter periods of time such as a quarter hour basis, which
conduces to finding stochastic roots of such a weather tran-
sition matrix. Finally, another area of application arises in the
study of transition matrices describing chronic diseases evo-
lution �13�. In this case the transition matrix describes the
progression in patients of a disease through different severity
states. Here, again it is necessary to study stochastic roots of
the transition matrix in order to obtain information at shorter
time intervals.

In all these examples the transition matrices of Markovian
processes are obtained for certain time intervals, which we
call here unit time, e.g., 1 yr, 1 h, etc. Then, the problem
arises for finding the stochastic matrices representing the
states of the system at certain fractions of this unit time. If
the unit-time stochastic matrix is M, the fractional time sto-
chastic matrices are given by X=M1/p. Unfortunately, it is
known that this is an ill-posed problem because �i� the pth
root of the matrix M may not exist, �ii� if it exists, this root
may possibly be nonstochastic, or �iii� such pth root may not
be unique. Only recently it has been analyzed in the math-
ematical literature under what conditions does a given sto-
chastic matrix have a stochastic pth root �14�. There are,
however, many open questions in this field and many facts
have been identified. The following ones are of particular
relevance here �14�:

�1� A non-negative pth root of a stochastic matrix is not
necessarily stochastic.

�2� A stochastic matrix may have a stochastic pth root for
some, but not all p.

It has been widely known that there may not be a uniform
and effective approach to solve the matrix root problem and
that it is possible that we have to deal with the stochastic root
problem in a case-by-case basis �12�. A way of testing
whether the pth roots of the transition matrix M are stochas-
tic is by considering its logarithm of Q=ln M. If the entries
of the matrix Q fulfill the following conditions:

�a� qij � 0 for i � j ,

�b� qii � 0,

�c� �
j=1

r

qij = 0 for i = 1, . . . ,r ,

then the pth roots of the transition matrix M are stochastic
�15�. However, if these conditions are not fulfilled, we can
still have case �2� above. In such cases the current available

approach is to compute some pth root and perturbs it to be
stochastic �10,13,16�.

III. DEFINING THE TRANSITION MATRIX

We consider here that information can flow from any node
to another in the same connected component of the network.
This information can also travel back and forth through the
links of the network. Then, the information arising at a node
p can arrive at a node q by using any of the walks connecting
both nodes in the network. Let us consider that the “loss” of
the information is proportional to the length of the walk.
Then, the amount of information arising at node p that ar-
rives at node q at time step k is given by Ipq

k =ck�Ak�pq, where
the kth power of the adjacency matrix gives the number of
walks of length k in which the information can travel be-
tween the corresponding nodes. The coefficient ck gives the
loss of information during the walk �17�. The total amount of
information flowing from p to q is given by

Ipq = �
k=1

�

ck�Ak�pq, �1�

and the total amount of information emanating from p is
given by

Ip = �
q=1

n

Ipq.

Hereafter, the coefficients ck are taken to be the inverse fac-
torial of k. It can be easily shown that

Ipq = �
k=0

�
�Ak�pq

k!
= �eA�pq, �2�

where eA is the exponential adjacency matrix, which is de-
fined as �18�

eA = �
k=0

�
Ak

k!
. �3�

The diagonal entries of eA correspond to the subgraph
centrality of the nodes in the network �19� and the nondiago-
nal ones correspond to the communicability function be-
tween the corresponding pairs of nodes �20�. Both measures
have found applications in diverse areas of the study of com-
plex networks �21–28� and the mathematical study of the
so-called Estrada index of a graph, tr�eA�, has received much
attention in the literature �29–33�. By using the spectral for-
mula for the communicability between pairs of nodes in the
network, we can see that Ipq is the thermal Green’s function
of the network for �=1, where � is the inverse temperature,

Ipq = Gpq��� = �
j=1

n

� j�p�� j�q�exp��� j� . �4�

Here, we introduce the probability that the information
arising at node p travels to node q as
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Pp→q =
Ipq

Ip
.

We remark that q is not necessarily different from p. We can
represent these transition probabilities in the form of a matrix
P as follows:

P = �
P1→1 P1→2 ¯ P1→n

P2→1 P2→2 ¯ P2→n

] ] � ]

Pn→1 Pn→2 ¯ Pn→n

� . �5�

The probability Pp→q is not necessarily equal to Pq→p and
then P is in general not symmetric. It is straightforward to
realize that the sum of any row of P is equal to 1,
�q=1

n Pp→q=1, i.e., P is a row-stochastic matrix. By defini-
tion, a transition matrix is a stochastic matrix where the entry
Pp→q is the transition probability of going from state p to
state q.

IV. QUANTIFYING THE INFORMATION MOBILITY

We have previously interpreted the communicability func-
tion Ipq as the thermal Green’s function of the network �20�.
Consequently, it represents how much the qth node oscillates
when we “shake” the pth node. In other words, it represents
how a perturbation or an impact propagates from one place
to another in the network. Then, if we apply such perturba-
tion to the pth, node it will be transmitted to all other nodes
in the network, not only to the qth one. Thus, Pp→q tells us
the probability that node q receives such a perturbation
among all the nodes in the network. The matrix P is the
transition matrix for this process in full analogy to the an-
nual or the hourly transition matrices obtained in finance or
medical applications. However, contrary to the annual or the
hourly transition matrices in which the unit time is very well
defined in physical terms, e.g., 1 yr, 1 month, etc., here, the
situation is very different. We can consider that the matrix P
is a unit-time transition matrix only in the mathematical
sense, i.e., it is the transition matrix raised to 1. However, we
cannot assign a physical time to this “unit time” as it could
be different for different networks. This situation is managed
at the end of this section. Before it, we need to understand
the nature of the stochastic process we are investigating.

In order to investigate the nature of this stochastic pro-
cess, we need first to investigate what happens at the infinite
limit T=limk→� P1/k. It is easy to prove that �10�

lim
k→�

P1/k = I ,

where I is the identity matrix. To find such a relation, we
only need to express the kth root in the following way:
P1/k=e�ln P�/k. Note that the identity ln P1/k=1 /k ln P
exists for a matrix with no eigenvalues on R− and for 1 /k
� �−1,1� �18�. Then,

lim
k→�

P1/k = lim
k→�

e�ln P�/k = e0 = I , �6�

where 0 is an all-zero matrix. This condition has been intro-
duced axiomatically in models of mobility in social and eco-
nomic contexts �7,8�.

The transition matrix T0=I tells us that at the very first
stage of this process all the information arising at a particular
node stays there. That is, there is no information diffusing
from one node to another in the network. As the process
advances in time the probabilities that information spread
from one node to another is different from zero for any pair
of nodes in the same connected component. Consequently,
the Markovian chain is simulating the process in which the
information, concentrated at the nodes in the initial stage,
diffuses from one node to another at an infinite time.

The amount of information that is transferred from the
nodes at a given time step can be easily computed by con-
sidering the trace of the corresponding transition matrix. At
the very first step tr�limk→� P1/k�=n, where n is the number
of nodes in the network. Consequently, an appropriate mea-
sure for mobility in the network at the time step represented
by P1/k can be given by

Mk =
n − tr�P1/k�

n − 1
. �7�

The mobility coefficient Mk is bounded as 0�Mk�1,
where the lower bound is reached when limk→� P1/k, and the
upper bound is reached for the stationary state. The lower
bound is proved by the fact that tr�limk→� P1/k�=n. The up-
per bound is characterized by the stationary state, which is
given by �=limk→� Pk. The transition matrix of the station-
ary state is given by �34�

� =�
�1 �2 ¯ �n

�1 �2 ¯ �n

] ] ]

�1 �2 ¯ �n

	 ,

where �= ��1 �2 ¯ �n� is the stationary distribution. The
vector � has a norm of 1, �i=1

n �i=1, which makes the mo-
bility coefficient equal to 1.

This index is analogous to the Shorrocks mobility index
�6�, with the difference being basically in the form of the
transition matrices introduced here. If the roots of the transi-
tion matrix are stochastic, we do not need to calculate the kth
root of P in order to obtain the mobility indices. In such a
case the calculation is straightforward by using the eigenval-
ues of the matrix P. Let � j �1 be an eigenvalue of the sto-
chastic matrix P. Then,

Mk =

n − �
j+1

n

�� j�1/k

n − 1
. �8�

However, we have already mentioned the fact that the
transition matrices defined here for complex networks have
in general nonstochastic roots. Then, we need to compute the
perturbed roots using the regularization approach of Charitos
et al. �13� to obtain the mobility indices. We will see later in
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this work that this is not necessary for the transition matrices
defined here and we can still take advantage of the calcula-
tion based on the use of the eigenvalues of the matrix P.

Now, we can take advantage of this definition to explain
the concept of physical time in the current context. Because
we cannot assign a physical value for the unit time due to its
dependence on the network studied, we propose to use the
concept of mobility half time. The information mobility half
time is the time at which 50% of the information contained
originally in the nodes of the networks is moved through the
links. We know that at time zero the information is concen-
trated at the nodes and during the process such information is
spread through the links of the network. Then, the informa-
tion mobility half time defines a time measure which is un-
ambiguously determined for any network. A way to measure
this index is introduced in the next section.

In order to determine the information mobility half time,
we need to analyze the transition matrices at fractional time
intervals. The transition matrices for the Markovian chain at
these fractional time intervals are then given by the kth root
of the stochastic matrix P,

T1/k = P1/k. �9�

We recall here that the kth root of the matrix P can be ex-
pressed by the following integral �18�:

P1/k =
k sin��/k�

�
P


0

�

�tkI + P�−1dt . �10�

For such Markovian stochastic process, the kth root of the
stochastic matrix P should exist and needs to be stochastic.
This question is analyzed in the Appendix of this work.

In summary, the stochastic process described by the dif-
ferent fractional powers of the transition matrix T, i.e., by
the kth roots of P, is an information diffusion process. At the
initial state, the information is concentrated on the nodes and
all the information arising from a node returns to it. As the
time progresses, some amount of information is allowed to
flow from one node to another until a stationary state is
reached at infinite time.

V. COMPUTATIONAL RESULTS

A. Influence of regularization on mobility indices

We start by considering a simple example which is illus-
trated in Fig. 1�a�. The logarithm of the transition matrix P
for this graph has some negative out-diagonal entries, which
indicates that some of its roots are not stochastic. We calcu-
lated 19 fractional powers of the transition matrix for this
graph using the regularization method according to the algo-
rithm of Charitos et al. �13�. In Fig. 1�b� we plot these ma-
trices and fit the data points by using the weighted least-
square method �35� implemented in the STATISTICA package
�36�. It can be clearly seen that the information diffuses from
the main diagonal of the plots, in which it is concentrated at
the starting of the process, to the regions outside the main
diagonal. When the stationary state is reached the transition
matrix has the form of the matrix �, which when represented
as in Fig. 1�b� has a shape characterized by multiple horizon-
tal stripes; see the plot for 1 /k=100.

Then, we calculated the same fractional powers without
regularization by using the real Schur form �37�, i.e., not
necessarily stochastic roots. Using both approaches we cal-
culate the mobility coefficient as defined by expression �19�.
The mobility indices calculated by both approaches are quite
close to each other, differing in less than 0.08% on average.
We plotted the values of Mk versus 1 /k, observing that the
mobility coefficient increases as a power law of the form

Mk =
a

b + c�1/k�	 , �11�

where 	=−0.1121 with the regularization approach and
	=−0.1111 without it. The correlation coefficient for the fit-
ting is 0.9999 in both cases.

We further observe the universal character of this relation
for random and real-world networks. Due to the practical
importance of this result, we investigate further the calcula-
tion of the mobility coefficient using both approaches for
four real-world networks. The networks will be described
below, but for the time being we say that they have 34, 67,
710, and 1586 nodes. Their names are Zackary, Prison, PIN
H. pylori and corporate �see below for description�. In all
cases the mobility indices obtained by the two methods were
very close to each other, not differing in more than 1.3%.

A

B

FIG. 1. �Color online� �a� An artificial network used to illustrate
the process of information mobility �b� for different values of frac-
tional times 1 /k
1. The transition matrix for the value 1 /k=100 is
also illustrated as a representation of the stationary state.
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The mobility of the four networks obeys relation �11�, and
the values of 	 using the values of the mobility calculated by
the two methods do not differ in more than 0.03 units. In Fig.
2 we plot the results obtained here for these networks with
and without regularization.

The important conclusion of this experiment is that we do
not need to use the regularization algorithm for calculating
the mobility coefficient. Instead we can take advantage of
using expression �10� and obtaining the values of Mk simply
by computing the powers of the eigenvalues of the transition
matrix.

B. Information mobility half time

An important consequence of the existence of relationship
�11� is that we can obtain the value of the information mo-
bility half time, 1 /k50, for which Mk=0.5. This is the time �in
terms of 1 /k� after which there will be more information
transferred from the nodes than retained on them. We recall
that at the beginning of the stochastic process all the infor-
mation is concentrated on the nodes with no mobility from
one node to another. The value of 1 /k50 is then given by

1/k50 = exp� ln� a

0.5
− b� − ln c

d
� . �12�

The value of 1 /k50 for the artificial network illustrated in Fig.
1 is 0.288. This means that this network transfers 50% of the
information through the nodes after approximately 1/3 of the
time since the beginning of the stochastic process. In general,
the smaller the value of 1 /k50, the shorter the time used by
the network to transfer 50% of the information through the
nodes.

C. Information mobility in random networks

Now, we investigate the information mobility in random
models of complex networks. In particular we investigate

how the information mobility changes with the changes in
the average degrees in Erdős-Rényi �ER� �38� and Barabási-
Albert �BA� �39� models of networks. In both models, each
random network starts with g nodes and new nodes are
added consecutively in such a way that a new node is con-
nected to exactly g nodes chosen randomly from the already
existing nodes. The average degree �� is then exactly equal
to 2g. The new edges are attached according to a specific
probability distribution, namely, the Poissonian distribution
for the ER model and the preferential attachment mechanism
for the BA model. We study random networks grown by
these two mechanisms up to n=1000 nodes, changing sys-
tematically the value of �� from 4 to 16. For every value of
��, we generated 1000 random networks. In Fig. 3 we illus-
trate a summary of the results obtained for the mobility in-
dices calculated by using expression �10�.

The first interesting result which is observed in Fig. 3 is
that all ER and BA networks obey the power-law depen-
dence �11� between the mobility and 1 /k �see internal panels
of Fig. 3�. The second one is that 1 /k50 decreases as a power
law with the increase in the average degree of the networks,
1 /k50���−�. The best fitted models are 1 /k50�ER�
=0.661 37��−1.1418 and 1 /k50�BA�=0.402 97��−1.0702. As
can be seen in the main panel of Fig. 3 the decrease is fastest
for the BA networks than for the ER ones. For instance, for
��=16 the BA networks transfer 50% of the information at
about 1/60 of the time after the initial step of the stochastic
process. On the other hand, for similar ER network this per-
centage of transfer takes place at about 1/33 of the time after
the initial step. The main conclusion here is that scale-free

FIG. 2. �Color online� Illustration of the results obtained by
calculating the fractional powers of the transition matrix with and
without regularization for the artificial network illustrated in Fig. 1
and for four real-world networks.

FIG. 3. �Color online� �Inner panels� Illustration of the power-
law dependence between the information mobility and the fractional
time for random networks with Poisson and scale-free degree dis-
tributions. It is seen that as the time progresses the mobility grows
until reaching a saturation at values about 1 /k=1. �Main panel�
Relation between the information mobility half time and the aver-
age degree for the random networks generated by ER and BA mod-
els. It is observed that as the average degree increases the mobility
half time goes to zero following a power-law decay. For small av-
erage degree it is seen that scale-free networks �BA� display a larger
mobility half time than ER networks.
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TABLE I. Brief description of the real-world complex networks studied.

Name Nodes Links Description Ref.

Roget 994 3640

Vocabulary network of words related by their
definitions in Roget’s Thesaurus of English. Two

words are connected if one is used in the
definition of the other. �40�

ODLIS 2898 16 376

Vocabulary network of words related by their
definitions in the Online Dictionary of Library

and Information Science. Two words are
connected if one is used in the definition of the

other. �41�

Geom 3621 9461
Collaboration network of scientists in the field of

computational geometry. �42�

Corporate 1586 11 540

Network of the American corporate elite formed
by the directors of the 625 largest corporations
that reported the compositions of their boards

selected from the Fortune 1000 in 1999. �43�

Prison 67 142

Social network of inmates in prison who chose
“what fellows on the tier are you closest friends

with?” �44�

Zachary 34 78
Social network of friendship between members of

the Zachary karate club. �45�

College 32 96

Social network among college students in a
course about leadership. The students choose

which three members they wanted to have in a
committee. �46�

Galesburg 31 67 Friendship ties among 31 physicians. �47�

High tech 33 91

Friendship ties among the employees in a small
hi-tech computer firm which sells, installs, and

maintains computer systems. �47�

SawMill 36 62
Communication network within a small

enterprise. �47�

ColoSpring 324 347

Risk network of persons with HIV infection
during its early epidemic phase in Colorado

Springs, USA �sexual and injecting drugs
partners� from 1985 to 1999. �48�

Heterosexual 82 83

Heterosexual contacts which were extracted at the
Cadham Provincial Laboratory and is a six-month

block data between November 1997 and May
1998. �49�

Homosexual 250 266

Contact tracing study, from 1985 to 1999, for
HIV tests in Colorado Springs, USA, where most

of the registered contacts were homosexual. �49�

GD 249 635

Citation network of papers published in the
Proceedings of Graph Drawing during the period

of 1994–2000. �50�

Centrality 118 613
Citation network of papers published in the field

of network centrality. �51,52�

Small world 233 994

Citation network of papers that cite Milgram’s
1967 Psychology Today paper or use small world

in the title. �53�

USAir97 332 2126
Airport transportation network between airports in

U.S. in 1997. �54�

Int_1997 3015 5156 The Internet at the autonomous system �AS� level
as of September 1997 and of April 1998 taken

from the COSIN database.

�55,56�

Int_1998 3522 6324
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networks have better information mobility than random net-
works with a Poissonian degree distribution. However, in the
limit of very high average degree, both kinds of networks
tend to have the same information mobility �see the trend of
the fitted curves in Fig. 3�.

D. Information mobility in real-world networks

We study here 38 real-world complex networks account-
ing for ecological, biological, informational, technological,
and social systems. The description of all data sets and the
appropriate references are given in Table I.

We start by generating the P matrices for all these net-
works. We then calculated the values of the mobility coeffi-
cient using expression �10� and plot them versus 1 /k in Fig.
4. As can be seen in this figure the mobility of all networks
grows as a power-law function of 1 /k. In all cases the power-

law function is given by expression �11� with coefficients
ranging from 	=−1.08 to 	=−1.52.

The values of the power-law coefficients and those of
1 /k50 reflect the large differences existing in the mobility of
information for the networks studied �see Fig. 5�. The net-
work with the smallest 1 /k50 is the Online Dictionary of
Library and Information Science �ODLIS� in which 50% of
the information is spread at 1/60 of the initial time of the
stochastic process. A significant difference is observed for
the networks with the largest values of 1 /k50, in which 50%
of information is spread only after 1/3 of the initial time. In
Fig. 5 we have included the plots of 1 /k50 versus �� for ER
and BA generated in the previous section. In general, most
networks have information mobilities that are better than ER
random networks with the same average degree. For in-
stance, only 12 out of 38 networks spread information at
longer times than if they were random. On the other side of

TABLE I. �Continued.�

Name Nodes Links Description Ref.

Electronic1 122 189 Electronic sequential logic circuits parsed from
the ISCAS89 benchmark set, where nodes

represent logic gates and flip-flops.

�57�
Electronic2 252 399

Electronic3 512 819

PIN1 2224 6608 Protein-protein interaction networks in S.
cereviciae, H. pylori, B. subtilis, A. fulgidus, P.

falciparum, and H. sapiens.

�57–63�
PIN2 710 1396

PIN3 84 98

PIN4 32 36

PIN5 229 604

PIN6 2783 6007

Trans-ecoli 328 456
Direct transcriptional regulation between operons

in Escherichia coli. �57,64�

Trans-yeast 662 1062
Direct transcriptional regulation between genes in

Saccaromyces cerevisae. �57,65�

Neurons 280 1973

Neuronal synaptic network of the nematode C.
elegans, which includes all data except muscle

cells and using all synaptic connections. �57,66�

Grassland 75 113

All vascular plants and all insects and trophic
interactions found inside stems of plants collected

from 24 sites distributed within England and
Wales. �67�

Scotch
broom 154 366

Trophic interactions between the herbivores,
parasitoids, predators, and pathogens associated

with broom, Cytisus scoparius, collected in
Silwood Park, Berkshire, England, U.K. �68�

Canton
creek 108 707

Primarily invertebrates and algae in a tributary,
surrounded by pasture, of the Taieri river in the

South island of New Zealand. �69�
Chesapeake
bay 33 71

The pelagic portion of an eastern U.S. estuary,
with an emphasis on larger fishes. �70�

Coachella
Valley 30 241

Wide range of highly aggregated taxa from the
Coachella valley desert in Southern California. �71�

Benguela 29 191
Marine ecosystem of Benguela off the southwest

coast of South Africa. �72�

Reef Small 50 503
Caribbean coral reef ecosystem from the Puerto

Rico-Virgin Island shelf complex. �73�
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the coin, there are 12 out of 38 networks that spread infor-
mation better than scale-free networks with the same average
degree.

As can be seen in Fig. 5, the mobility of 50% of informa-
tion increases with the average degree of the corresponding
network. However, as can be inferred from the dispersion of
the points in the plot of 1 /k50 versus �� in real-world net-
works �Fig. 5�, the information mobility depends on some
other factors apart from the average degree. Then, a natural
way of analyzing the performance of the information mobil-
ity for a network is to compare its 1 /k50 value with that of a
random network generated by the BA or the ER approach
with the same average degree. A simple measure of this per-
formance is given by the percentage of improvement in the
information mobility with respect to the BA network,

P�%� = 100k50�RW�/k50�BA� , �13�

where RW stands for real-world networks. In Table II, we
give the values of the parameters calculated here for the 38
complex networks studied.

Let us consider the ODLIS as an example. This network
performs the spread of information P=180% better than the
corresponding BA network. The Internet at the autonomous
system �AS� level as from April 1998 performs the spread of
information P=490% better than the corresponding BA net-
work. In general, the determination of what mechanism
works behind this great performance of complex networks is
still a puzzle. For instance, we know that these two networks

FIG. 4. Illustration of the power-law dependence of the infor-
mation mobility on the fractional time for 38 real-world networks.
It is seen that as the time progresses from 0 to 1 the information
mobility grows following a power-law. At infinite times, a value of
M =1 is obtained.

FIG. 5. Illustration of the relation between the half-time param-
eter and the average degree for 38 real-world networks. The plots
obtained for the random networks are given for analyzing the per-
formance of the real-world networks with respect to the random
ones.

TABLE II. The densities �E /N�, the power-law coefficients �	�,
the half times �1 /k50�, and the performance �P�%�� �see text for
definitions� for the 38 real-world complex networks studied here.
The networks are ranked in decreasing order of their performances.

Network E /N 	 1 /k50 P �%�

Internet1998 3.5911 −1.4536 0.0209 490.19

Internet1997 3.4202 −1.4329 0.0230 469.26

Geom 5.2256 −1.3814 0.0282 243.17

ODLIS 11.3016 −1.5164 0.0167 179.76

PIN ecoli 3.9324 −1.2801 0.0525 177.20

PIN human 2.1585 1.2953 0.0516 163.32

USAir97 12.8072 −1.4991 0.0177 148.33

PIN yeast 5.9424 −1.3292 0.0425 140.94

Scotch broom 4.7532 −1.2947 0.0544 139.78

Trans-ecoli 2.7805 −1.1787 0.1076 125.35

Small world 8.5322 −1.3707 0.0328 123.90

Trans-yeast 3.2085 −1.1958 0.0982 117.80

Centrality 10.3898 −1.3561 0.0359 91.61

PIN malaria 5.2751 −1.2379 0.0774 87.78

PIN B subtilis 2.3333 −1.1024 0.2009 81.01

Neurons 14.0929 −1.3797 0.0297 80.08

Roget 7.3239 −1.2582 0.0633 75.61

Corporate 14.5523 −1.3670 0.0305 75.18

Heterosexual 2.0244 −1.0780 0.2532 74.81

ColoSpring 2.1420 −1.0779 0.2412 73.92

Grassland 3.0133 −1.1229 0.1678 73.74

Canton 13.0926 −1.3603 0.0349 73.68

GD 5.1004 −1.1855 0.0957 73.66

Homosexual 2.1280 −1.0760 0.2466 72.81

Zackary 4.5882 −1.1963 0.1097 71.91

High tech 5.5152 −1.2074 0.0962 67.37

PIN A fulgidus 2.2500 −1.0777 0.2601 65.06

Chesapeake 4.3030 −1.1503 0.1389 60.85

SawMill 3.4444 −1.1102 0.1782 60.20

Galesburg 4.3226 −1.1452 0.1408 59.75

Reef Small 20.1200 −1.3999 0.0279 58.14

Benguela 13.1724 −1.3364 0.0442 57.71

Prison 4.2388 −1.1293 0.1490 57.64

Coachella 16.0667 −1.3637 0.0364 56.66

Electronic3 3.1992 −1.0876 0.2110 55.01

Electronic2 3.1667 −1.0853 0.2169 54.11

Electronic1 3.0984 −1.0822 0.2259 53.19

Social3 6.0000 −1.1653 0.1249 47.41
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are scale free and display good expansion properties �super-
homogeneity� �74–76�, which can contribute to their higher
performance, but the airport transportation network in the
U.S. in 1997 does not have a power-law degree distribution
and performs P=148% with respect to the BA model. The
complexity of the performance of the information mobility
can be observed in the fact that the neural network of C.
elegans, which also has an exponential degree distribution
and an average degree of 14, has only P=80% with respect
to the BA model. In summary, the mobility of 50% of infor-
mation in a complex network appears to be related to several
topological factors, such as the average degree, the degree
distribution, and the homogeneity of the network.

VI. SUMMARY

We have extended the concept of mobility in a society or
economy to the general case of the information mobility in a
complex network. The concept is based on a stochastic pro-
cess taking place in the network in which information
spreads from the nodes. At the initial step, all the information
arising at a giving node stays there after a certain number of
steps. As the time progresses the information spreads from
one node to another until a stationary state is reached at an
infinite time. The transition matrix at unit time characterizing
this process gives the probability that the information arising
at a given node ends up at a target one. Then, the mobility of
this information is introduced on the basis of the trace of the
transition matrices at fractional time intervals. We have
shown that the regularization method developed by Charitos
et al. �13� is a suitable method of transforming the nonsto-
chastic roots of the transition matrix into stochastic ones.

An interesting characteristic of complex networks is the
fractional time at which they diffuse 50% of the information
contained in its nodes �1 /k50�. The values of 1 /k50 increases
with the average degree in random networks with a Poisso-
nian or a power-law degree distribution. Scale-free networks
display a better spread of information than the random net-
works with a Poissonian degree distribution. The mobility
coefficient displays a universal power-law relationship with
the fractional time for all random and real-world networks.

We have analyzed all the present concepts by studying 38
real-world networks. We find that some real-world networks
perform information spreading even better than scale-free
networks with the same average degree. The network ver-

sions of the Internet at the AS level analyzed here display the
best performance in information spreading among all the net-
works studied.
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APPENDIX: FRACTIONAL POWERS OF THE
TRANSITION MATRIX P

There are two important questions in relation to the roots
of the stochastic matrix P. The first is about the existence of
such roots and the second is about their stochasticities. To
answer the first, let us define a diagonal matrix S
=diag�1TeA�−1, where 1 is a n1 all-one vector. Then, the
row-stochastic matrix of P can be written as P=SeA. Now,
the question about the existence of the transition matrix of
the Markovian chain is transformed into the question about
the existence of the kth root of P=SeA. It is easy to show that
the transition matrix P=SeA has no eigenvalues on R− and
consequently it has a principal kth root X=P1/k for any k.
However, the existence of the principal kth root does not
guaranty that such roots are stochastic. Thus, we need to
analyze the second question posted below.

The analysis of the stochasticity of the roots of the tran-
sition matrix is a well known ill-posed problem �16�. Unfor-
tunately, when dealing with real-world complex networks,
none of the previous analytical results �14� for the stochas-
ticity of the transition matrices are fulfilled. Consequently we
have to deal with the stochasticity of the roots of the transi-
tion matrix of general complex networks in a case-by-case
basis.

We have analyzed several complex networks in this case-
by-case basis and we have observed that Q=ln P generally
does not fulfill requirement �a� previously reported for the
entries of Q. It can be easily shown that in general these
conditions are not fulfilled even for simple graphs, in par-
ticular the condition qij �0 for i� j. The following shows
one example gently provided by Higham and Lin:

P =�
0.245 0.203 0.225 0.203 0.123

0.216 0.237 0.216 0.180 0.150

0.225 0.203 0.245 0.203 0.123

0.216 0.180 0.216 0.237 0.150

0.183 0.210 0.183 0.210 0.215
�,

ln P =�
− 2.954 0.973 0.977 0.973 0.0301

1.037 − 2.892 1.037 − 0 . 025 0.8435

0.977 0.973 − 2.954 0.973 0.031

1.037 − 0 . 025 1.037 − 2.892 0.844

0.045 1.175 0.045 1.175 − 2.440
�.
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The first root of the transition matrix of this graph which is
not stochastic is the 61th. This indicates that the process can
be considered as a Markovian chain for all fractional times
between 1/60 and the unit time. As we have stated before, the
nonstochastic root matrices can be slightly perturbed to sto-
chastic ones. Here, we apply the algorithm of regularization
of Charitos et al. �13� for transforming the roots of the ma-
trix P into stochastic ones by using perturbations. The algo-
rithm is described below.

Let X=P1/k. The algorithm proposed by Charitos et al.
�13� searches a transition matrix X� from the set � of all n
n transition matrices that, when raised to the power k, most
closely matches the transition matrix P. That is,

X� = arg min
A��

�A − X̂� ,

where � · � is a suitable norm in the space of nn matrices

and X̂ is the matrix resulting from removing the imaginary
part of all the entries of X. The algorithm calculates X� in a

row-by-row basis for each row of X̂ by searching a vector

�� = arg min
�i�Simi

m
lp��i,�̂i� ,

where lp is a vector norm measuring the distance between
two points in the n-dimensional space and Simi

m is an
n-dimensional simplex. The algorithm to obtain �� as taken
from Charitos et al. �13� is

�1� If �̂ij �0, ∀ j=1, . . . ,n, then STOP; �i
�= âi. Other-

wise,
�2� Compute the quantity �=−� j:âij
0âij and the number

of positive entries m= # �j � âij �0�.
�3a� If âij �0, then set âij =0, ∀ j=1, . . . ,n.
�3b� If âij �0, then set âij→ âij −� /m , ∀ j=1, . . . ,n.
�4� Go to step �1�.
We use here a MATLAB code gently provided by Charitos

to make the calculation of the stochastic roots of the transi-
tion matrix P. Note that the code by Charitos et al. �13�
provides the consolidated algorithm as proposed in the paper
that combines the previous four-step procedure for the Lp

norm with two subalgorithms that use the relative entropy
measure for each row to produce the optimal short interval
transition matrix. In addition, the code includes the “entry
fix” as proposed by Charitos et al. �13� for avoiding cases
where a short interval transition matrix has a zero in an entry
where the corresponding entry in the original transition ma-
trix is positive. For instance, in the example given below we
calculate the 61th root of the transition matrix P,

P1/61 =�
0.9531 0.0153 0.0155 0.0153 0.0007

0.0163 0.9541 0.0163 − 6 . 44  10−6 0.0132

0.0155 0.0153 0.9531 0.0153 0.0007

0.0163 − 6 . 44  10−6 0.0163 0.9541 0.0132

0.0010 0.0184 0.0010 0.0184 0.9610
	 ,

which has two negative entries. This calculation was carried
out using the MATLAB code ROOTPM_REAL for calculating
roots of real matrices via real Schur form �37�. The code can
be obtained at The Matrix Function Toolbox �77�. However,
when we applied the algorithm of Charitos et al. �13�, we
obtain the following stochastic matrix, which is very close to
the previous one:

P1/61 =�
0.9531 0.0153 0.0155 0.0153 0.0007

0.0163 0.9513 0.0163 0.0029 0.0132

0.0155 0.0153 0.9531 0.0153 0.0007

0.0163 0.0029 0.0163 0.9513 0.0132

0.0010 0.0184 0.0010 0.0184 0.9610
	 .

When we analyze the roots of the transition matrix P, we
are only considering some time intervals of the stochastic
process. For instance, if we consider P1/2, we obtain the tran-
sition matrix for a period of time which is only one half of
the unit time. Then, in order to investigate what happens at
time steps closer to the unit time, we need to know Tk−1

�considering that P=Tk�. One strategy that we consider here
is to find the tth root of P and then rising P1/t to the power
p= t−1:P�t−1�/t=T�t−1�k/t=TkT−k/t. Then, for sufficiently large
values of t we have

lim
t→�

P�t−1�/t = lim
t→�

k→�

TkT−k/t = Tk−1.
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